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Generalizing Parking Functions with Randomness

Introduction

I Consider a parking lot with spots labeled 1 to n.

I n cars go into the parking lot 1 by 1 trying to park.

I Each car ci has a preference spot ai .

I Now we have a preference list (a1, a2, ...., an).

I If ci ’s preference spot ai is taken (by cj , j < i), then ci goes
forward searching for the next available spot to park.

I If a preference list (a1, a2, ..., an) let every car park, it becomes
a Parking function.



Examples

n = 4
Some stuff that work:

I (1, 2, 3, 4)

I (1, 2, 2, 4)

I (4, 1, 1, 3)

Some stuff that do not work:

I (1, 3, 3, 4)

I (4, 4, 4, 4)

I (2, 2, 2, 2)

Surprise. The number of Parking functions of length n is
(n + 1)n−1.
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Introducing Randomness

Our first generalization

I if ai is taken, now ci flips a fair coin.

I If it’s head, ci goes forward, and backwards if it’s tail.

I Once ci has chosen that direction, no turning back.

Some of the stuff that do not work before (non Parking functions)
have a chance now.

I (1, 3, 3, 4), probability 3
4 .

While some of the stuff that work before has a even lower
probability.

I (1, 2, 2, 4), probability 1
2 .
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n = 3
I (1,1,1), probability 1

4 .

I (1,1,2), probability 1
4 .

I (1,1,3), probability 1
2 .

I (1,2,1), probability 1
2 .

I (1,2,2), probability 1
2 .

I (1,2,3), probability 1.

I (1,3,1), probability 1
2 .

I (1,3,2), probability 1.

I (1,3,3), probability 1
2 .

I (2,1,1), probability 1
2 .

I (2,1,2), probability 1
2 .

I (2,1,3), probability 1.

I (2,2,1), probability 3
4 .

I (2,2,2), probability 1
2 .

Once passed (2,2,2), it’s all symmetric.



Expected Value

You get the expected value by summing them up.

I n = 3, EV = 16.

I n = 2, EV = 3.

I n = 1, EV = 1.

Big Surprise.The expected value of number of preferences that
lead to success is (n + 1)n−1.

Real Big Surprise. This is the exact same number as Parking
functions.
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Our Second Generalization

I Whenever stuck, flip a coin (not necessarily fair) to choose a
direction.

I Going backwards means backing up one spot at a time up to
k spots to check for an available spot before they go forward
to check for the next available spot.

n = 4, p = 1
2 , k = 1 examples:

I (1,3,3,4), probability: 1
2

I (2,2,2,2), probability: 7
8
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p = 1
2 , k = 1 Expected Value

n 1 2 3 4 5 6 7 8 9
EV 1 3.5 20 163.25 1744.25 23121.375 366699 6779029.0625 143242152.5625

Table: Expected values for n < 10.

No one:

Me: I’m gonna guess a formula for this.
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We Guessed A Formula

Let Tk,p(n) be the number of Parking functions.

Tk,p(n) =
n−1∑
i=0

(
n − 1

i

)
Tk,p(i)(n − i)n−i−2(i + 1 + p min{k, n − i − 1})

No one:

Me: Beautiful.
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Distribution of Probabilities, n = 7 Example

p 0 1/64 2/64 3/64 4/64 5/64 6/64 7/64
f (p) 339472 1 136 1 2194 1 209 1
p 8/64 9/64 10/64 11/64 12/64 13/64 14/64 15/64

f (p) 12466 1 140 1 3107 1 143 1
p 16/64 17/64 18/64 19/64 20/64 21/64 22/64 23/64

f (p) 40610 1 141 1 1361 1 74 1
p 24/64 25/64 26/64 27/64 28/64 29/64 30/64 31/64

f (p) 14253 1 75 1 1589 1 148 1
p 32/64 33/64 34/64 35/64 36/64 37/64 38/64 39/64

f (p) 94792 1 30 1 1171 1 33 1
p 40/64 41/64 42/64 43/64 44/64 45/64 46/64 47/64

f (p) 4861 1 104 1 576 1 37 1
p 48/64 49/64 50/64 51/64 52/64 53/64 54/64 55/64

f (p) 35324 1 35 1 614 1 38 1
p 56/64 57/64 58/64 59/64 60/64 61/64 62/64 63/64

f (p) 6819 1 39 1 734 1 42 1

Table: n = 7, p for probability and f (p) for number of preferences of
probability p.

See any patterns?
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Introducing Middle School Math

Example. n = 6, the 16 preferences have probability k
32 , where k

is odd are:
Here we write (a1, a2, a3, a4, a5, a6) as a1a2a3a4a5a6.

222222,
332222, 333222, 333322, 333332,
443222, 443322, 443332, 444322, 444332, 444432,
554322, 554332, 554432, 555432,
665432.

Pascal’s Triangle!
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We Are Going Somewhere

Theorem 1.4. There is one and only one parking preference for
which the probability that every car parks is 2t−1

2n−1 , where
t ∈ [1, 2n−2].

About proving Theorem 1.4...
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Flashback to the Olympiads
I Lemma 4.2.1. One of the parking process of the preference

satisfies: for every ci , ai is taken and ai − 1 is open.
I Lemma 4.2.2. Denote bi as the spot ci actually parks, then
|bi − bj | = 1 for some j < i , i ∈ {2, 3, 4, ..., n}.

I Lemma 4.2.3. The preference (a1, a2, ..., an) satisfies:
0 ≤ ai − ai+1 ≤ 1.

I Lemma 4.2.4. an = 2.
I Lemma 4.2.5. There are 2n−2 preferences satisfying the

lemmas above.
I Lemma 4.2.6. For each preference, ci where ai 6= 2 must

take the only correct choice in order to keep cj where j > i
still have choices to make, in order to achieve probability k

2n−1

where k is odd for that parking process.
I Lemma 4.2.7. Preference of length n that consists of only 2s

have probability 2n−1−1
2n−1 .

I Lemma 4.2.8 The 2n−2 preferences described above all have
probability k

2n−1 where k is odd.
I Lemma 4.2.9.These 2n−2 probabilities are all different.



Flashback to the Olympiads

To prove Lemma 4.2.9. from the last slide.
Theorem 1.5. For parking preference
(ak1 , ..., ak2 , ..., ak3 , ..., akak1−1 , ..., an), where aj = aj+1 when

j ∈ [ki , ki+1 − 2] and from akak1−1 to an they are all 2s, (The only

form qualifies a probability 2t−1
2n−1 , where t ∈ [1, 2n−2]) has

probability `
2n−1 .

` = 2n−1 − 2
kak1−1−1−1

+

ak1−1∑
j=2

2kj−2 − 2kj−1−1

Example 4.3.1. For parking preference (8,8,7,6,5,5,5,4,3,2,2,2),
` = 211 − 29 + 26 − 24 + 21 − 20, and the probability that every car
parks is `

211
= 1585

2048 .



Thank you!


