Some Random Stuff About Random Parking

Melanie Tian with Professor Enrique Treviño

Department of Mathematics and Computer Science Lake Forest College

October 20, 2020

Generalizing Parking Functions with Randomness

Introduction

- Consider a parking lot with spots labeled 1 to n.
- n cars go into the parking lot 1 by 1 trying to park.
- Each car c_{i} has a preference spot a_{i}.
- Now we have a preference list $\left(a_{1}, a_{2}, \ldots ., a_{n}\right)$.
- If c_{i} 's preference spot a_{i} is taken (by $c_{j}, j<i$), then c_{i} goes forward searching for the next available spot to park.
- If a preference list $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ let every car park, it becomes a Parking function.

Examples

$n=4$

Some stuff that work:

- $(1,2,3,4)$
- $(1,2,2,4)$
- $(4,1,1,3)$

Some stuff that do not work:

- $(1,3,3,4)$
- $(4,4,4,4)$
- $(2,2,2,2)$

Examples

$n=4$
Some stuff that work:

- $(1,2,3,4)$
- $(1,2,2,4)$
- $(4,1,1,3)$

Some stuff that do not work:

- $(1,3,3,4)$
- $(4,4,4,4)$
- $(2,2,2,2)$

Surprise. The number of Parking functions of length n is $(n+1)^{n-1}$.

Introducing Randomness

Our first generalization

- if a_{i} is taken, now c_{i} flips a fair coin.
- If it's head, c_{i} goes forward, and backwards if it's tail.
- Once c_{i} has chosen that direction, no turning back.

Introducing Randomness

Our first generalization

- if a_{i} is taken, now c_{i} flips a fair coin.
- If it's head, c_{i} goes forward, and backwards if it's tail.
- Once c_{i} has chosen that direction, no turning back.

Some of the stuff that do not work before (non Parking functions) have a chance now.

Introducing Randomness

Our first generalization

- if a_{i} is taken, now c_{i} flips a fair coin.
- If it's head, c_{i} goes forward, and backwards if it's tail.
- Once c_{i} has chosen that direction, no turning back.

Some of the stuff that do not work before (non Parking functions) have a chance now.

- (1, 3, 3, 4), probability $\frac{3}{4}$.

Introducing Randomness

Our first generalization

- if a_{i} is taken, now c_{i} flips a fair coin.
- If it's head, c_{i} goes forward, and backwards if it's tail.
- Once c_{i} has chosen that direction, no turning back.

Some of the stuff that do not work before (non Parking functions) have a chance now.

- (1, 3, 3, 4), probability $\frac{3}{4}$.

While some of the stuff that work before has a even lower probability.

- $(1,2,2,4)$, probability $\frac{1}{2}$.

$n=3$

- ($1,1,1$), probability $\frac{1}{4}$.
- $(1,1,2)$, probability $\frac{1}{4}$.
- $(1,1,3)$, probability $\frac{1}{2}$.
- $(1,2,1)$, probability $\frac{1}{2}$.
- $(1,2,2)$, probability $\frac{1}{2}$.
- $(1,2,3)$, probability 1 .
- $(1,3,1)$, probability $\frac{1}{2}$.
- ($1,3,2$), probability 1 .
- $(1,3,3)$, probability $\frac{1}{2}$.
- $(2,1,1)$, probability $\frac{1}{2}$.
- $(2,1,2)$, probability $\frac{1}{2}$.
- $(2,1,3)$, probability 1 .
- $(2,2,1)$, probability $\frac{3}{4}$.
- $(2,2,2)$, probability $\frac{1}{2}$.

Once passed $(2,2,2)$, it's all symmetric.

Expected Value

You get the expected value by summing them up.

Expected Value

You get the expected value by summing them up.

- $n=3, E V=16$.
- $n=2, E V=3$.
- $n=1, E V=1$.

Expected Value

You get the expected value by summing them up.

- $n=3, E V=16$.
- $n=2, E V=3$.
- $n=1, E V=1$.

Big Surprise.

Expected Value

You get the expected value by summing them up.

- $n=3, E V=16$.
- $n=2, E V=3$.
- $n=1, E V=1$.

Big Surprise. The expected value of number of preferences that lead to success is $(n+1)^{n-1}$.

Expected Value

You get the expected value by summing them up.

- $n=3, E V=16$.
- $n=2, E V=3$.
- $n=1, E V=1$.

Big Surprise. The expected value of number of preferences that lead to success is $(n+1)^{n-1}$.

Real Big Surprise. This is the exact same number as Parking functions.

Our Second Generalization

- Whenever stuck, flip a coin (not necessarily fair) to choose a direction.
- Going backwards means backing up one spot at a time up to k spots to check for an available spot before they go forward to check for the next available spot.

Our Second Generalization

- Whenever stuck, flip a coin (not necessarily fair) to choose a direction.
- Going backwards means backing up one spot at a time up to k spots to check for an available spot before they go forward to check for the next available spot.
$n=4, p=\frac{1}{2}, k=1$ examples:
- (1,3,3,4), probability: $\frac{1}{2}$
- $(2,2,2,2)$, probability: $\frac{7}{8}$

$p=\frac{1}{2}, k=1$ Expected Value

n	1	2	3	4	5	6	7	8	9
EV	1	3.5	20	163.25	1744.25	23121.375	366699	6779029.0625	143242152.5625

Table: Expected values for $n<10$.

$p=\frac{1}{2}, k=1$ Expected Value

n	1	2	3	4	5	6	7	8	9
EV	1	3.5	20	163.25	1744.25	23121.375	366699	6779029.0625	143242152.5625

Table: Expected values for $n<10$.

No one:

Me: I'm gonna guess a formula for this.

We Guessed A Formula

Let $T_{k, p}(n)$ be the number of Parking functions.

$$
T_{k, p}(n)=\sum_{i=0}^{n-1}\binom{n-1}{i} T_{k, p}(i)(n-i)^{n-i-2}(i+1+p \min \{k, n-i-1\})
$$

We Guessed A Formula

Let $T_{k, p}(n)$ be the number of Parking functions.

$$
T_{k, p}(n)=\sum_{i=0}^{n-1}\binom{n-1}{i} T_{k, p}(i)(n-i)^{n-i-2}(i+1+p \min \{k, n-i-1\})
$$

No one:

Me: Beautiful.

Distribution of Probabilities, $n=7$ Example

p	0	$1 / 64$	$2 / 64$	$3 / 64$	$4 / 64$	$5 / 64$	$6 / 64$	$7 / 64$
$f(p)$	339472	1	136	1	2194	1	209	1
p	$8 / 64$	$9 / 64$	$10 / 64$	$11 / 64$	$12 / 64$	$13 / 64$	$14 / 64$	$15 / 64$
$f(p)$	12466	1	140	1	3107	1	143	1
p	$16 / 64$	$17 / 64$	$18 / 64$	$19 / 64$	$20 / 64$	$21 / 64$	$22 / 64$	$23 / 64$
$f(p)$	40610	1	141	1	1361	1	74	1
p	$24 / 64$	$25 / 64$	$26 / 64$	$27 / 64$	$28 / 64$	$29 / 64$	$30 / 64$	$31 / 64$
$f(p)$	14253	1	75	1	1589	1	148	1
p	$32 / 64$	$33 / 64$	$34 / 64$	$35 / 64$	$36 / 64$	$37 / 64$	$38 / 64$	$39 / 64$
$f(p)$	94792	1	30	1	1171	1	33	1
p	$40 / 64$	$41 / 64$	$42 / 64$	$43 / 64$	$44 / 64$	$45 / 64$	$46 / 64$	$47 / 64$
$f(p)$	4861	1	104	1	576	1	37	1
p	$48 / 64$	$49 / 64$	$50 / 64$	$51 / 64$	$52 / 64$	$53 / 64$	$54 / 64$	$55 / 64$
$f(p)$	35324	1	35	1	614	1	38	1
p	$56 / 64$	$57 / 64$	$58 / 64$	$59 / 64$	$60 / 64$	$61 / 64$	$62 / 64$	$63 / 64$
$f(p)$	6819	1	39	1	734	1	42	1

Table: $n=7, p$ for probability and $f(p)$ for number of preferences of probability p.

Distribution of Probabilities, $n=7$ Example

p	0	$1 / 64$	$2 / 64$	$3 / 64$	$4 / 64$	$5 / 64$	$6 / 64$	$7 / 64$
$f(p)$	339472	1	136	1	2194	1	209	1
p	$8 / 64$	$9 / 64$	$10 / 64$	$11 / 64$	$12 / 64$	$13 / 64$	$14 / 64$	$15 / 64$
$f(p)$	12466	1	140	1	3107	1	143	1
p	$16 / 64$	$17 / 64$	$18 / 64$	$19 / 64$	$20 / 64$	$21 / 64$	$22 / 64$	$23 / 64$
$f(p)$	40610	1	141	1	1361	1	74	1
p	$24 / 64$	$25 / 64$	$26 / 64$	$27 / 64$	$28 / 64$	$29 / 64$	$30 / 64$	$31 / 64$
$f(p)$	14253	1	75	1	1589	1	148	1
p	$32 / 64$	$33 / 64$	$34 / 64$	$35 / 64$	$36 / 64$	$37 / 64$	$38 / 64$	$39 / 64$
$f(p)$	94792	1	30	1	1171	1	33	1
p	$40 / 64$	$41 / 64$	$42 / 64$	$43 / 64$	$44 / 64$	$45 / 64$	$46 / 64$	$47 / 64$
$f(p)$	4861	1	104	1	576	1	37	1
p	$48 / 64$	$49 / 64$	$50 / 64$	$51 / 64$	$52 / 64$	$53 / 64$	$54 / 64$	$55 / 64$
$f(p)$	35324	1	35	1	614	1	38	1
p	$56 / 64$	$57 / 64$	$58 / 64$	$59 / 64$	$60 / 64$	$61 / 64$	$62 / 64$	$63 / 64$
$f(p)$	6819	1	39	1	734	1	42	1

Table: $n=7, p$ for probability and $f(p)$ for number of preferences of probability p.

See any patterns?

Introducing Middle School Math

Example. $n=6$, the 16 preferences have probability $\frac{k}{32}$, where k is odd are:
Here we write $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ as $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$.

222222,
332222, 333222, 333322, 333332,
443222, 443322, 443332, 444322, 444332, 444432,
554322, 554332, 554432, 555432, 665432.

Introducing Middle School Math

Example. $n=6$, the 16 preferences have probability $\frac{k}{32}$, where k is odd are:
Here we write $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ as $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$.

222222,
332222, 333222, 333322, 333332,
443222, 443322, 443332, 444322, 444332, 444432,
554322, 554332, 554432, 555432, 665432.

Pascal's Triangle!

We Are Going Somewhere

Theorem 1.4. There is one and only one parking preference for which the probability that every car parks is $\frac{2 t-1}{2^{n-1}}$, where $t \in\left[1,2^{n-2}\right]$.

We Are Going Somewhere

Theorem 1.4. There is one and only one parking preference for which the probability that every car parks is $\frac{2 t-1}{2^{n-1}}$, where $t \in\left[1,2^{n-2}\right]$.

About proving Theorem 1.4...

Flashback to the Olympiads

- Lemma 4.2.1. One of the parking process of the preference satisfies: for every c_{i}, a_{i} is taken and $a_{i}-1$ is open.
- Lemma 4.2.2. Denote b_{i} as the spot c_{i} actually parks, then $\left|b_{i}-b_{j}\right|=1$ for some $j<i, i \in\{2,3,4, \ldots, n\}$.
- Lemma 4.2.3. The preference $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satisfies: $0 \leq a_{i}-a_{i+1} \leq 1$.
- Lemma 4.2.4. $a_{n}=2$.
- Lemma 4.2.5. There are 2^{n-2} preferences satisfying the lemmas above.
- Lemma 4.2.6. For each preference, c_{i} where $a_{i} \neq 2$ must take the only correct choice in order to keep c_{j} where $j>i$ still have choices to make, in order to achieve probability $\frac{k}{2^{n-1}}$ where k is odd for that parking process.
- Lemma 4.2.7. Preference of length n that consists of only $2 s$ have probability $\frac{2^{n-1}-1}{2^{n-1}}$.
- Lemma 4.2.8 The 2^{n-2} preferences described above all have probability $\frac{k}{2^{n-1}}$ where k is odd.
- Lemma 4.2.9. These 2^{n-2} probabilities are all different.

Flashback to the Olympiads

To prove Lemma 4.2.9. from the last slide.
Theorem 1.5. For parking preference
$\left(a_{k_{1}}, \ldots, a_{k_{2}}, \ldots, a_{k_{3}}, \ldots, a_{k_{k_{1}-1}}, \ldots, a_{n}\right)$, where $a_{j}=a_{j+1}$ when
$j \in\left[k_{i}, k_{i+1}-2\right]$ and from $a_{k_{a_{k_{1}}-1}}$ to a_{n} they are all $2 s$, (The only form qualifies a probability $\frac{2 t-1}{2^{n-1}}$, where $t \in\left[1,2^{n-2}\right]$) has probability $\frac{\ell}{2^{n-1}}$.

$$
\ell=2^{n-1}-2^{k_{k_{k_{1}-1}-1}-1}+\sum_{j=2}^{a_{k_{1}}-1} 2^{k_{j}-2}-2^{k_{j-1}-1}
$$

Example 4.3.1. For parking preference ($8,8,7,6,5,5,5,4,3,2,2,2$), $\ell=2^{11}-2^{9}+2^{6}-2^{4}+2^{1}-2^{0}$, and the probability that every car parks is $\frac{\ell}{2^{11}}=\frac{1585}{2048}$.

Thank you!

