Some Random Stuff About Random Parking

Melanie Tian with Professor Enrique Treviño

Department of Mathematics and Computer Science Lake Forest College

October 20, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Generalizing Parking Functions with Randomness

Introduction

- Consider a parking lot with spots labeled 1 to *n*.
- n cars go into the parking lot 1 by 1 trying to park.
- Each car c_i has a preference spot a_i .
- Now we have a preference list $(a_1, a_2, ..., a_n)$.
- ► If c_i's preference spot a_i is taken (by c_j, j < i), then c_i goes forward searching for the next available spot to park.
- If a preference list (a₁, a₂, ..., a_n) let every car park, it becomes a Parking function.

Examples

n = 4

Some stuff that work:

(1,2,3,4)
(1,2,2,4)
(4,1,1,3)

Some stuff that do not work:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(1,3,3,4)
(4,4,4,4)
(2,2,2,2)

Examples

n = 4

Some stuff that work:

(1,2,3,4)
(1,2,2,4)
(4,1,1,3)

Some stuff that do not work:

(1,3,3,4)
(4,4,4,4)
(2,2,2,2)

Surprise. The number of Parking functions of length n is $(n+1)^{n-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our first generalization

- ▶ if *a_i* is taken, now *c_i* flips a fair coin.
- ▶ If it's head, *c_i* goes forward, and backwards if it's tail.

Once c_i has chosen that direction, no turning back.

Our first generalization

- ▶ if *a_i* is taken, now *c_i* flips a fair coin.
- ▶ If it's head, c_i goes forward, and backwards if it's tail.
- Once c_i has chosen that direction, no turning back.

Some of the stuff that do not work before (non Parking functions) have a chance now.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our first generalization

- ▶ if *a_i* is taken, now *c_i* flips a fair coin.
- ▶ If it's head, c_i goes forward, and backwards if it's tail.
- Once c_i has chosen that direction, no turning back.

Some of the stuff that do not work before (non Parking functions) have a chance now.

• (1, 3, 3, 4), probability $\frac{3}{4}$.

Our first generalization

- ▶ if *a_i* is taken, now *c_i* flips a fair coin.
- ▶ If it's head, c_i goes forward, and backwards if it's tail.
- Once c_i has chosen that direction, no turning back.

Some of the stuff that do not work before (non Parking functions) have a chance now.

• (1, 3, 3, 4), probability $\frac{3}{4}$.

While some of the stuff that work before has a even lower probability.

•
$$(1, 2, 2, 4)$$
, probability $\frac{1}{2}$.

n = 3

- (1,1,1), probability $\frac{1}{4}$.
- (1,1,2), probability $\frac{1}{4}$.
- (1,1,3), probability $\frac{1}{2}$.
- (1,2,1), probability $\frac{1}{2}$.
- (1,2,2), probability $\frac{1}{2}$.
- (1,2,3), probability 1.
- (1,3,1), probability $\frac{1}{2}$.
- (1,3,2), probability 1.
- (1,3,3), probability $\frac{1}{2}$.
- (2,1,1), probability $\frac{1}{2}$.
- (2,1,2), probability $\frac{1}{2}$.
- (2,1,3), probability 1.
- (2,2,1), probability $\frac{3}{4}$.
- (2,2,2), probability $\frac{1}{2}$.

Once passed (2,2,2), it's all symmetric.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

You get the expected value by summing them up.

You get the expected value by summing them up.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶
$$n = 1$$
, $EV = 1$.

You get the expected value by summing them up.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶
$$n = 3, EV = 16$$

▶
$$n = 1, EV = 1.$$

Big Surprise.

You get the expected value by summing them up.

•
$$n = 3, EV = 16.$$

$$h = 2, EV = 3.$$

▶
$$n = 1$$
, $EV = 1$.

Big Surprise. The expected value of number of preferences that lead to success is $(n + 1)^{n-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

You get the expected value by summing them up.

▶
$$n = 3, EV = 16$$

▶
$$n = 2, EV = 3.$$

▶
$$n = 1, EV = 1.$$

Big Surprise. The expected value of number of preferences that lead to success is $(n + 1)^{n-1}$.

Real Big Surprise. This is the exact same number as Parking functions.

Our Second Generalization

- Whenever stuck, flip a coin (not necessarily fair) to choose a direction.
- Going backwards means backing up one spot at a time up to k spots to check for an available spot before they go forward to check for the next available spot.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our Second Generalization

- Whenever stuck, flip a coin (not necessarily fair) to choose a direction.
- Going backwards means backing up one spot at a time up to k spots to check for an available spot before they go forward to check for the next available spot.

$$n = 4, p = \frac{1}{2}, k = 1$$
 examples:

- (1,3,3,4), probability: $\frac{1}{2}$
- (2,2,2,2), probability: $\frac{7}{8}$

$p = \frac{1}{2}, k = 1$ Expected Value

n	1	2	3	4	5	6	7	8	9
EV	1	3.5	20	163.25	1744.25	23121.375	366699	6779029.0625	143242152.5625

Table: Expected values for n < 10.

 $p = \frac{1}{2}, k = 1$ Expected Value

n	1	2	3	4	5	6	7	8	9
EV	1	3.5	20	163.25	1744.25	23121.375	366699	6779029.0625	143242152.5625

Table: Expected values for n < 10.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

No one:

Me: I'm gonna guess a formula for this.

We Guessed A Formula

Let $T_{k,p}(n)$ be the number of Parking functions.

$$T_{k,p}(n) = \sum_{i=0}^{n-1} {n-1 \choose i} T_{k,p}(i)(n-i)^{n-i-2}(i+1+p\min\{k,n-i-1\})$$

We Guessed A Formula

Let $T_{k,p}(n)$ be the number of Parking functions.

$$T_{k,p}(n) = \sum_{i=0}^{n-1} {n-1 \choose i} T_{k,p}(i)(n-i)^{n-i-2}(i+1+p\min\{k,n-i-1\})$$

(ロ)、(型)、(E)、(E)、 E) の(()

No one:

Me: Beautiful.

Distribution of Probabilities, n = 7 Example

р	0	1/64	2/64	3/64	4/64	5/64	6/64	7/64
f(p)	339472	1	136	1	2194	1	209	1
р	8/64	9/64	10/64	11/64	12/64	13/64	14/64	15/64
f(p)	12466	1	140	1	3107	1	143	1
р	16/64	17/64	18/64	19/64	20/64	21/64	22/64	23/64
f(p)	40610	1	141	1	1361	1	74	1
р	24/64	25/64	26/64	27/64	28/64	29/64	30/64	31/64
f(p)	14253	1	75	1	1589	1	148	1
р	32/64	33/64	34/64	35/64	36/64	37/64	38/64	39/64
f(p)	94792	1	30	1	1171	1	33	1
р	40/64	41/64	42/64	43/64	44/64	45/64	46/64	47/64
f(p)	4861	1	104	1	576	1	37	1
р	48/64	49/64	50/64	51/64	52/64	53/64	54/64	55/64
f(p)	35324	1	35	1	614	1	38	1
р	56/64	57/64	58/64	59/64	60/64	61/64	62/64	63/64
f(p)	6819	1	39	1	734	1	42	1

Table: n = 7, p for probability and f(p) for number of preferences of probability p.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Distribution of Probabilities, n = 7 Example

р	0	1/64	2/64	3/64	4/64	5/64	6/64	7/64
f(p)	339472	1	136	1	2194	1	209	1
р	8/64	9/64	10/64	11/64	12/64	13/64	14/64	15/64
f(p)	12466	1	140	1	3107	1	143	1
р	16/64	17/64	18/64	19/64	20/64	21/64	22/64	23/64
f(p)	40610	1	141	1	1361	1	74	1
р	24/64	25/64	26/64	27/64	28/64	29/64	30/64	31/64
f(p)	14253	1	75	1	1589	1	148	1
р	32/64	33/64	34/64	35/64	36/64	37/64	38/64	39/64
f(p)	94792	1	30	1	1171	1	33	1
р	40/64	41/64	42/64	43/64	44/64	45/64	46/64	47/64
f(p)	4861	1	104	1	576	1	37	1
р	48/64	49/64	50/64	51/64	52/64	53/64	54/64	55/64
f(p)	35324	1	35	1	614	1	38	1
р	56/64	57/64	58/64	59/64	60/64	61/64	62/64	63/64
f(p)	6819	1	39	1	734	1	42	1

Table: n = 7, p for probability and f(p) for number of preferences of probability p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

See any patterns?

Introducing Middle School Math

Example. n = 6, the 16 preferences have probability $\frac{k}{32}$, where k is odd are: Here we write $(a_1, a_2, a_3, a_4, a_5, a_6)$ as $a_1a_2a_3a_4a_5a_6$.

222222, 332222, 333222, 333322, 333332, 443222, 443322, 443332, 444322, 444332, 444432, 554322, 554332, 554432, 555432, 665432.

Introducing Middle School Math

Example. n = 6, the 16 preferences have probability $\frac{k}{32}$, where k is odd are: Here we write $(a_1, a_2, a_3, a_4, a_5, a_6)$ as $a_1a_2a_3a_4a_5a_6$.

222222, 332222, 333222, 333322, 333332, 443222, 443322, 443332, 444322, 444332, 444432, 554322, 554332, 554432, 555432, 665432.

Pascal's Triangle!

Theorem 1.4. There is one and only one parking preference for which the probability that every car parks is $\frac{2t-1}{2^{n-1}}$, where $t \in [1, 2^{n-2}]$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 1.4. There is one and only one parking preference for which the probability that every car parks is $\frac{2t-1}{2^{n-1}}$, where $t \in [1, 2^{n-2}]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

About proving Theorem 1.4...

Flashback to the Olympiads

- ► Lemma 4.2.1. One of the parking process of the preference satisfies: for every c_i, a_i is taken and a_i − 1 is open.
- ▶ **Lemma 4.2.2.** Denote b_i as the spot c_i actually parks, then $|b_i b_j| = 1$ for some $j < i, i \in \{2, 3, 4, ..., n\}$.
- Lemma 4.2.3. The preference (a₁, a₂, ..., a_n) satisfies: 0 ≤ a_i − a_{i+1} ≤ 1.
- ▶ Lemma 4.2.4. *a_n* = 2.
- Lemma 4.2.5. There are 2ⁿ⁻² preferences satisfying the lemmas above.
- ▶ Lemma 4.2.6. For each preference, c_i where $a_i \neq 2$ must take the only correct choice in order to keep c_j where j > i still have choices to make, in order to achieve probability $\frac{k}{2^{n-1}}$ where k is odd for that parking process.
- Lemma 4.2.7. Preference of length n that consists of only 2s have probability ²ⁿ⁻¹/_{2n-1}.
- **Lemma 4.2.8** The 2^{n-2} preferences described above all have probability $\frac{k}{2^{n-1}}$ where k is odd.
- **Lemma 4.2.9.** These 2^{n-2} probabilities are all different.

Flashback to the Olympiads

To prove Lemma 4.2.9. from the last slide. **Theorem 1.5.** For parking preference $(a_{k_1}, ..., a_{k_2}, ..., a_{k_3}, ..., a_{k_{a_{k_1}-1}}, ..., a_n)$, where $a_j = a_{j+1}$ when $j \in [k_i, k_{i+1} - 2]$ and from $a_{k_{a_{k_1}-1}}$ to a_n they are all 2s, (The only form qualifies a probability $\frac{2t-1}{2^{n-1}}$, where $t \in [1, 2^{n-2}]$) has probability $\frac{\ell}{2^{n-1}}$.

$$\ell = 2^{n-1} - 2^{k_{a_{k_1-1}-1}-1} + \sum_{j=2}^{a_{k_1}-1} 2^{k_j-2} - 2^{k_{j-1}-1}$$

Example 4.3.1. For parking preference (8,8,7,6,5,5,5,4,3,2,2,2), $\ell = 2^{11} - 2^9 + 2^6 - 2^4 + 2^1 - 2^0$, and the probability that every car parks is $\frac{\ell}{2^{11}} = \frac{1585}{2048}$.

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ