A Combinatorial Proof for the Aftermath of a Party

Melanie Tian

tandfonline.com/doi/full/10.1080/07468342.2021.1909979
Tulane University, February 2023, MATH FOR ALL

Definition

aftermath

/'æftəı,mæ日/

- the consequences of an event, especially a catastrophic event.
- (analogous to afterparty) the math that happens after a party.

Party Scene

- Consider a party sufficiently intense such that at one moment everyone suddenly leaves grabbing a random Tulane ID card

Party Scene

- Consider a party sufficiently intense such that at one moment everyone suddenly leaves grabbing a random Tulane ID card
- "This card is for University identification and must be carried by the named individual at all times." (existence)

Party Scene

- Consider a party sufficiently intense such that at one moment everyone suddenly leaves grabbing a random Tulane ID card
- Given that there is no fake ID (uniqueness)

Party Scene

- Consider a party sufficiently intense such that at one moment everyone suddenly leaves grabbing a random Tulane ID card
- Given that there is no fake ID (uniqueness)
- What is the expected number of people who grab their own ID?

In other words

- Problem: What is the average number of fixed points in a random permutation of n objects?

In other words

- Problem: What is the average number of fixed points in a random permutation of n objects?
- Answer: 1

In other words

- Problem: What is the average number of fixed points in a random permutation of n objects?
- Answer: 1
- Proof:

$$
E[x]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{n}=1
$$

In other words

- Problem: What is the average number of fixed points in a random permutation of n objects?
- Answer: 1
- Proof:

$$
E[x]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{n}=1
$$

- This talk:

We got a longer proof!

Like, just, why?

- "The true significance of a result in combinatorics is very often not the result itself, but something less explicit that one learns from the proof." -Timothy Gowers

Like, just, why?

- "The true significance of a result in combinatorics is very often not the result itself, but something less explicit that one learns from the proof." -Timothy Gowers
- Read like a writer

To actually count this

$>\frac{\sum_{k=1}^{n} k(\# \text { of permutations s.t. exactly } k \text { people get their own IDs) }}{n!}$

To actually count this

$-\frac{\sum_{k=1}^{n} k \text { (\# of permutations s.t. exactly } k \text { people get their own IDs) }}{n!}$

- That \# is $\binom{n}{k}$ (\# s.t. for the rest $n-k$ people no one gets their own ID)

And that \#... (for no one gets their own ID)

- You don't have your ID

And that \#... (for no one gets their own ID)

- You don't have your ID
- Someone took yours

And that \#... (for no one gets their own ID)

- You don't have your ID
- Someone took yours
- What do they have?

And that \#... (for no one gets their own ID)

- You don't have your ID
- Someone took yours
- What do they have?
- They either have yours or not

And that \#... (for no one gets their own ID)

- You don't have your ID
- Someone took yours
- What do they have?
- They either have yours or not
- $f(n)=(f(n-1)+f(n-2))(n-1)$, here we go

for 7 sure brute force but what about for n

we want

$$
\sum_{k=1}^{n} k\binom{n}{k} f(n-k)
$$

to be n !

for 7 sure brute force but what about for n

- we want

$$
\sum_{k=1}^{n} k\binom{n}{k} f(n-k)
$$

to be n !

- We know this

$$
\sum_{k=0}^{n}\binom{n}{k} f(n-k)
$$

is $n!$

So we just need to split up $f(n)$ a bit to make stuff fit

So we just need to split up $f(n)$ a bit to make stuff fit

- Observe:

$$
\begin{aligned}
f(n)= & \sum_{k=2}^{m}(k-1)\binom{n}{k} f(n-k)+\binom{n-1}{m} f(n-m) \\
& +(n-m)\binom{n-1}{m-1} f(n-m-1)
\end{aligned}
$$

So we just need to split up $f(n)$ a bit to make stuff fit

- Observe:

$$
\begin{aligned}
f(n)= & \sum_{k=2}^{m}(k-1)\binom{n}{k} f(n-k)+\binom{n-1}{m} f(n-m) \\
& +(n-m)\binom{n-1}{m-1} f(n-m-1)
\end{aligned}
$$

- In short, we are "stretching it out, do some ransom stuff, and try to fold everything in again".

So we just need to split up $f(n)$ a bit to make stuff fit

- Observe:

$$
\begin{aligned}
f(n)= & \sum_{k=2}^{m}(k-1)\binom{n}{k} f(n-k)+\binom{n-1}{m} f(n-m) \\
& +(n-m)\binom{n-1}{m-1} f(n-m-1)
\end{aligned}
$$

- In short, we are "stretching it out, do some ransom stuff, and try to fold everything in again".
- The details are messing with combinatorial identities that no one wants to see.
how did you observe that
- $f(7)=6 f(6)+6 f(5)$
how did you observe that

$$
\begin{aligned}
\end{aligned} \quad \begin{aligned}
f(7) & =6 f(6)+6 f(5) \\
& =30 f(5)+30 f(4)+6 f(5)
\end{aligned}
$$

how did you observe that

$$
\begin{aligned}
\quad f(7) & =6 f(6)+6 f(5) \\
& =30 f(5)+30 f(4)+6 f(5) \\
& =36 f(5)+30 f(4)
\end{aligned}
$$

how did you observe that

- $f(7)=6 f(6)+6 f(5)$

$$
=30 f(5)+30 f(4)+6 f(5)
$$

$$
=36 f(5)+30 f(4)
$$

$$
=21 f(5)+15 f(5)+30 f(4)
$$

Hey! 21 and 15

how did you observe that

- $f(7)=6 f(6)+6 f(5)$

$$
\begin{aligned}
& =30 f(5)+30 f(4)+6 f(5) \\
& =36 f(5)+30 f(4) \\
& =21 f(5)+15 f(5)+30 f(4)
\end{aligned}
$$

Hey! 21 and 15
(we got to split into stuff from Pascal's triangle)

how did you observe that

- "I feel like mathematics sits halfway between science and art." -Lauren Williams

how did you observe that

－＂I feel like mathematics sits halfway between science and art．＂ －Lauren Williams
－赋体物而浏亮

