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Extremal Combinatorics

How big (or small) can a finite arrangement be if we insist that we
need to satisfy some restrictions?



Erdős–Ko–Rado

Problems considering intersecting set families.

I Erdős–Ko–Rado Theorem

I F is a family of distinct subsets of {1, 2, . . . , n} such that
each subset is of size k , with n ≥ 2k ,

I each pair of subsets has a nonempty intersection,

I then |F | ≤
(n−1
k−1

)
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Intro to Our Problem

A subsequence of a permutation:
anything you get by deleting stuff.

I Take a permutation of {1, 2, 3, 4, 5}, say 35124, we get
subsequences like 314, 12, 35124, etc.

I How many subsequences does a permutation of {1, 2, . . . , n}
have?

I 2n, duh.
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longest common subsequence of σ and τ

I say σ = 12345, τ = 13425,

I then LCS(σ, τ) = 4,

I because they both have 1345, and they don’t have any
common subsequences of length 5 (σ 6= τ).
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Our Problem

Let fk(n) denote the size of the biggest family of permutations of
{1, 2, . . . , n} such that any two elements in our family have LCS at
least k , find fk(n).



Immediate Results

I fk(n) ≤ n! (take EVERYTHING)

I by the way, fk(n) = n! is achievable by taking k = 1.

I fk(n) = 0 when k ≥ n (literally no one cares)

I fk+1(n) ≤ fk(n)

(This is like how to get 90% on MATH-230 final?
Leave an answer blank. )
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“Immediate” Results

Result 1. fk(n) ≥ n!
k!

I For example, let n = 10, k = 3, we give a construction with
|F | = 10!

3! = 4× 5× 6× · · · × 10.

I How?

I Insist that everyone needs to have 123 as a subsequence.

I Now “build around” 123, you have 4 choices for where to put
4, and 5 choices for where to put 5, etc.
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“Immediate” Results

Result 2. fk(n) ≥ n fk(n − 1)

I For example, let n = 10, k = 3. Observe that from every
permutation of {1, 2, . . . , 9}, we get 10 new ones.

I How?

I Because it literally doesn’t matter where you put 10. (We’ve
already satisfied all the requirements, TOTAL FREEDOM)
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Result 3. f2(n) ≤ n!
2

I Which is saying you don’t get more than half of the stuff.

I One standard move is you consider“pairs”.

I Pair everyone with its reverse, e.g. 13245 with 54231. They
don’t share anything.
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Conjecture. fk(n) ≤ n!
k!

I Which is saying fk(n) = n!
k!

I Maybe you can prove it.
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Real-World Applications

Please, don’t ask.


