Erdős–Ko–Rado Problems

Melanie Tian

Lake Forest College

Oct. 2021

(ロ)、(型)、(E)、(E)、 E) の(()

REU Polymath Jr.

Professor Pat Devlin, Yale University

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

What is combinatorics?

What is combinatorics?

- "Counting"
- "Anything that is not algebra, geometry, or number theory"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What is combinatorics?

- "Counting"
- "Anything that is not algebra, geometry, or number theory"
- "The full scope of combinatorics is not universally agreed upon" (Wikipedia)

Many combinatorics

Addictive Combinatorics

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Many combinatorics

- Addictive Combinatorics
- Enumerative Combinatorics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Many combinatorics

- Addictive Combinatorics
- Enumerative Combinatorics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

► Graph Theory

Many combinatorics

- Addictive Combinatorics
- Enumerative Combinatorics
- ► Graph Theory
- ▶ ...
- Extremal Combinatorics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Extremal Combinatorics

How big (or small) can a finite arrangement be if we insist that we need to satisfy some restrictions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Erdős–Ko–Rado Theorem

- Erdős–Ko–Rado Theorem
- F is a family of distinct subsets of {1, 2, ..., n} such that each subset is of size k, with n ≥ 2k,

Erdős–Ko–Rado Theorem

F is a family of distinct subsets of {1, 2, ..., n} such that each subset is of size k, with n ≥ 2k,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

each pair of subsets has a nonempty intersection,

Erdős–Ko–Rado Theorem

F is a family of distinct subsets of {1, 2, ..., n} such that each subset is of size k, with n ≥ 2k,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

each pair of subsets has a nonempty intersection,

• then
$$|F| \leq \binom{n-1}{k-1}$$
.

Intro to Our Problem

A **subsequence** of a permutation: anything you get by deleting stuff.

Take a permutation of {1, 2, 3, 4, 5}, say 35124, we get subsequences like 314, 12, 35124, etc.

Intro to Our Problem

A **subsequence** of a permutation: anything you get by deleting stuff.

- Take a permutation of {1, 2, 3, 4, 5}, say 35124, we get subsequences like 314, 12, 35124, etc.
- How many subsequences does a permutation of {1,2,..., n} have?

Intro to Our Problem

A **subsequence** of a permutation: anything you get by deleting stuff.

- Take a permutation of {1, 2, 3, 4, 5}, say 35124, we get subsequences like 314, 12, 35124, etc.
- How many subsequences does a permutation of {1, 2, ..., n} have?

longest common subsequence of σ and τ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ say
$$\sigma = 12345$$
, $\tau = 13425$,

longest common subsequence of σ and τ

(ロ)、(型)、(E)、(E)、 E) の(()

▶ say
$$\sigma = 12345$$
, $\tau = 13425$,

• then
$$LCS(\sigma, \tau) = 4$$
,

longest common subsequence of σ and τ

say
$$\sigma = 12345$$
, $\tau = 13425$,

• then
$$LCS(\sigma, \tau) = 4$$
,

▶ because they both have 1345, and they don't have any common subsequences of length 5 ($\sigma \neq \tau$).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Our Problem

Let $f_k(n)$ denote the size of the biggest family of permutations of $\{1, 2, ..., n\}$ such that any two elements in our family have *LCS* at least k, find $f_k(n)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▶ $f_k(n) \le n!$ (take EVERYTHING)

•
$$f_k(n) \le n!$$
 (take EVERYTHING)

by the way, $f_k(n) = n!$ is achievable by taking k = 1.

(ロ)、(型)、(E)、(E)、 E) の(()

•
$$f_k(n) \le n!$$
 (take EVERYTHING)

by the way, $f_k(n) = n!$ is achievable by taking k = 1.

• $f_k(n) = 0$ when $k \ge n$ (literally no one cares)

•
$$f_k(n) \le n!$$
 (take EVERYTHING)

by the way, $f_k(n) = n!$ is achievable by taking k = 1.

•
$$f_k(n) = 0$$
 when $k \ge n$ (literally no one cares)

$$f_{k+1}(n) \leq f_k(n)$$

(This is like how to get 90% on MATH-230 final? Leave an answer blank.)

Result 1. $f_k(n) \geq \frac{n!}{k!}$

Result 1. $f_k(n) \geq \frac{n!}{k!}$

For example, let n = 10, k = 3, we give a construction with $|F| = \frac{10!}{3!} = 4 \times 5 \times 6 \times \cdots \times 10$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Result 1. $f_k(n) \geq \frac{n!}{k!}$

For example, let n = 10, k = 3, we give a construction with $|F| = \frac{10!}{3!} = 4 \times 5 \times 6 \times \cdots \times 10$.

Result 1. $f_k(n) \geq \frac{n!}{k!}$

For example, let n = 10, k = 3, we give a construction with $|F| = \frac{10!}{3!} = 4 \times 5 \times 6 \times \cdots \times 10$.

How?

Insist that everyone needs to have 123 as a subsequence.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Result 1. $f_k(n) \geq \frac{n!}{k!}$

For example, let n = 10, k = 3, we give a construction with $|F| = \frac{10!}{3!} = 4 \times 5 \times 6 \times \cdots \times 10$.

How?

- Insist that everyone needs to have 123 as a subsequence.
- Now "build around" 123, you have 4 choices for where to put 4, and 5 choices for where to put 5, etc.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Result 2. $f_k(n) \ge n f_k(n-1)$

Result 2. $f_k(n) \ge n f_k(n-1)$

For example, let n = 10, k = 3. Observe that from every permutation of $\{1, 2, ..., 9\}$, we get 10 new ones.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Result 2. $f_k(n) \ge n f_k(n-1)$

For example, let n = 10, k = 3. Observe that from every permutation of $\{1, 2, ..., 9\}$, we get 10 new ones.

Result 2. $f_k(n) \ge n f_k(n-1)$

For example, let n = 10, k = 3. Observe that from every permutation of $\{1, 2, ..., 9\}$, we get 10 new ones.

► How?

Because it literally doesn't matter where you put 10. (We've already satisfied all the requirements, TOTAL FREEDOM)

Result 3. $f_2(n) \le \frac{n!}{2}$

Result 3. $f_2(n) \le \frac{n!}{2}$

Which is saying you don't get more than half of the stuff.

Result 3. $f_2(n) \le \frac{n!}{2}$

Which is saying you don't get more than half of the stuff.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

One standard move is you consider "pairs".

Result 3. $f_2(n) \le \frac{n!}{2}$

- Which is saying you don't get more than half of the stuff.
- One standard move is you consider "pairs".
- Pair everyone with its reverse, e.g. 13245 with 54231. They don't share anything.

What if we don't solve the problem?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conjecture. $f_k(n) \leq \frac{n!}{k!}$

What if we don't solve the problem?

Conjecture. $f_k(n) \leq \frac{n!}{k!}$

• Which is saying
$$f_k(n) = \frac{n!}{k!}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What if we don't solve the problem?

Conjecture.
$$f_k(n) \leq \frac{n!}{k!}$$

• Which is saying
$$f_k(n) = \frac{n!}{k!}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Maybe you can prove it.

Real-World Applications

Please, don't ask.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●