Erdős-Ko-Rado Problems

Melanie Tian
Lake Forest College

Oct. 2021

REU Polymath Jr.

Professor Pat Devlin, Yale University

Combinatorics

What is combinatorics?

- "Counting"

Combinatorics

What is combinatorics?

- "Counting"
- "Anything that is not algebra, geometry, or number theory"

Combinatorics

What is combinatorics?

- "Counting"
- "Anything that is not algebra, geometry, or number theory"
- "The full scope of combinatorics is not universally agreed upon" (Wikipedia)

Combinatorics

Many combinatorics

- Addictive Combinatorics

Combinatorics

Many combinatorics

- Addictive Combinatorics
- Enumerative Combinatorics

Combinatorics

Many combinatorics

- Addictive Combinatorics
- Enumerative Combinatorics
- Graph Theory

Combinatorics

Many combinatorics

- Addictive Combinatorics
- Enumerative Combinatorics
- Graph Theory
- Extremal Combinatorics

Extremal Combinatorics

How big (or small) can a finite arrangement be if we insist that we need to satisfy some restrictions?

Erdős-Ko-Rado

Problems considering intersecting set families.

Erdős-Ko-Rado

Problems considering intersecting set families.

- Erdős-Ko-Rado Theorem

Erdős-Ko-Rado

Problems considering intersecting set families.

- Erdős-Ko-Rado Theorem
- F is a family of distinct subsets of $\{1,2, \ldots, n\}$ such that each subset is of size k, with $n \geq 2 k$,

Erdős-Ko-Rado

Problems considering intersecting set families.

- Erdős-Ko-Rado Theorem
- F is a family of distinct subsets of $\{1,2, \ldots, n\}$ such that each subset is of size k, with $n \geq 2 k$,
- each pair of subsets has a nonempty intersection,

Erdős-Ko-Rado

Problems considering intersecting set families.

- Erdős-Ko-Rado Theorem
- F is a family of distinct subsets of $\{1,2, \ldots, n\}$ such that each subset is of size k, with $n \geq 2 k$,
- each pair of subsets has a nonempty intersection,
- then $|F| \leq\binom{ n-1}{k-1}$.

Intro to Our Problem

A subsequence of a permutation: anything you get by deleting stuff.

- Take a permutation of $\{1,2,3,4,5\}$, say 35124 , we get subsequences like $314,12,35124$, etc.

Intro to Our Problem

A subsequence of a permutation: anything you get by deleting stuff.

- Take a permutation of $\{1,2,3,4,5\}$, say 35124 , we get subsequences like $314,12,35124$, etc.
- How many subsequences does a permutation of $\{1,2, \ldots, n\}$ have?

Intro to Our Problem

A subsequence of a permutation: anything you get by deleting stuff.

- Take a permutation of $\{1,2,3,4,5\}$, say 35124 , we get subsequences like $314,12,35124$, etc.
- How many subsequences does a permutation of $\{1,2, \ldots, n\}$ have?
- 2^{n}, duh.

Intro to Our Problem

longest common subsequence of σ and τ

- say $\sigma=12345, \tau=13425$,

Intro to Our Problem

longest common subsequence of σ and τ

- say $\sigma=12345, \tau=13425$,
- then $\operatorname{LCS}(\sigma, \tau)=4$,

Intro to Our Problem

longest common subsequence of σ and τ

- say $\sigma=12345, \tau=13425$,
- then $\operatorname{LCS}(\sigma, \tau)=4$,
- because they both have 1345, and they don't have any common subsequences of length $5(\sigma \neq \tau)$.

Our Problem

Let $f_{k}(n)$ denote the size of the biggest family of permutations of $\{1,2, \ldots, n\}$ such that any two elements in our family have LCS at least k, find $f_{k}(n)$.

Immediate Results

- $f_{k}(n) \leq n!\quad$ (take EVERYTHING)

Immediate Results

- $f_{k}(n) \leq n!\quad$ (take EVERYTHING)
- by the way, $f_{k}(n)=n!$ is achievable by taking $k=1$.

Immediate Results

- $f_{k}(n) \leq n!\quad$ (take EVERYTHING)
- by the way, $f_{k}(n)=n!$ is achievable by taking $k=1$.
- $f_{k}(n)=0$ when $k \geq n \quad$ (literally no one cares)

Immediate Results

- $f_{k}(n) \leq n!\quad$ (take EVERYTHING)
- by the way, $f_{k}(n)=n!$ is achievable by taking $k=1$.
- $f_{k}(n)=0$ when $k \geq n \quad$ (literally no one cares)
- $f_{k+1}(n) \leq f_{k}(n)$
(This is like how to get 90% on MATH-230 final?
Leave an answer blank.)

"Immediate" Results

Result 1. $f_{k}(n) \geq \frac{n!}{k!}$

"Immediate" Results

Result 1. $f_{k}(n) \geq \frac{n!}{k!}$

- For example, let $n=10, k=3$, we give a construction with $|F|=\frac{10!}{3!}=4 \times 5 \times 6 \times \cdots \times 10$.

"Immediate" Results

Result 1. $f_{k}(n) \geq \frac{n!}{k!}$

- For example, let $n=10, k=3$, we give a construction with $|F|=\frac{10!}{3!}=4 \times 5 \times 6 \times \cdots \times 10$.
- How?

"Immediate" Results

Result 1. $f_{k}(n) \geq \frac{n!}{k!}$

- For example, let $n=10, k=3$, we give a construction with $|F|=\frac{10!}{3!}=4 \times 5 \times 6 \times \cdots \times 10$.
- How?
- Insist that everyone needs to have 123 as a subsequence.

"Immediate" Results

Result 1. $f_{k}(n) \geq \frac{n!}{k!}$

- For example, let $n=10, k=3$, we give a construction with $|F|=\frac{10!}{3!}=4 \times 5 \times 6 \times \cdots \times 10$.
- How?
- Insist that everyone needs to have 123 as a subsequence.
- Now "build around" 123, you have 4 choices for where to put 4 , and 5 choices for where to put 5 , etc.

"Immediate" Results

Result 2. $f_{k}(n) \geq n f_{k}(n-1)$

"Immediate" Results

Result 2. $f_{k}(n) \geq n f_{k}(n-1)$

- For example, let $n=10, k=3$. Observe that from every permutation of $\{1,2, \ldots, 9\}$, we get 10 new ones.

"Immediate" Results

Result 2. $f_{k}(n) \geq n f_{k}(n-1)$

- For example, let $n=10, k=3$. Observe that from every permutation of $\{1,2, \ldots, 9\}$, we get 10 new ones.
- How?

"Immediate" Results

Result 2. $f_{k}(n) \geq n f_{k}(n-1)$

- For example, let $n=10, k=3$. Observe that from every permutation of $\{1,2, \ldots, 9\}$, we get 10 new ones.
- How?
- Because it literally doesn't matter where you put 10. (We've already satisfied all the requirements, TOTAL FREEDOM)

"Immediate" Results

Result 3. $f_{2}(n) \leq \frac{n!}{2}$

"Immediate" Results

Result 3. $f_{2}(n) \leq \frac{n!}{2}$

- Which is saying you don't get more than half of the stuff.

"Immediate" Results

Result 3. $f_{2}(n) \leq \frac{n!}{2}$

- Which is saying you don't get more than half of the stuff.
- One standard move is you consider "pairs".

"Immediate" Results

Result 3. $f_{2}(n) \leq \frac{n!}{2}$

- Which is saying you don't get more than half of the stuff.
- One standard move is you consider "pairs".
- Pair everyone with its reverse, e.g. 13245 with 54231. They don't share anything.

What if we don't solve the problem?

Conjecture. $f_{k}(n) \leq \frac{n!}{k!}$

What if we don't solve the problem?

Conjecture. $f_{k}(n) \leq \frac{n!}{k!}$

- Which is saying $f_{k}(n)=\frac{n!}{k!}$

What if we don't solve the problem?

Conjecture. $f_{k}(n) \leq \frac{n!}{k!}$

- Which is saying $f_{k}(n)=\frac{n!}{k!}$
- Maybe you can prove it.

Real-World Applications

Please, don't ask.

